Synthesis and Two-photon Absorption Properties of s-Triazine Derivatives

Lei YIN¹, Yue Zhi CUI², Qi FANG^{1,3}*, Gang XUE¹, Gui Bao XU¹, Wen Tao YU¹

¹State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 ²Department of Chemical Engineering, Light Industry College of Shandong, Jinan 250100 ³State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093

Abstract: Two new s-triazine derivatives, which belong to linear dipolar type and triangle octupolar type respectively, have been synthesized. The structure of the dipolar compound has been determined by X-ray diffraction. The two-photon absorption cross-section σ , and the two-photon excited fluorescence (TPEF) intensities are increased significantly from dipolar compound to octupolar compound.

Keywords: s-Triazine, crystal structure, two-photon absorption, two-photon excited fluorescence.

Recently, organic molecules with large two-photon absorption (TPA) and intense two-photon excited fluorescence (TPEF) have attracted considerable attention due to their applications in various fields, such as optical limiting¹ and frequency up-converted fluorescence and lasing^{2,3}. General structural motifs for TPA and TPEF are D- π -A dipoles, D- π -D or A- π -A quadrupoles, (D = donor, A = acceptor, π = conjugating linker), most of which are linear compounds with some exceptions of A-shaped compounds. In 1999, the first octupolar compound, which shows significantly enhanced TPA cross section ⁴, was reported. Since then, octupolar TPA compounds became one of the researching focuses in organic opto-electronic materials. In this work, we report two new s-triazine derivatives (see **Figure 1**) which belong to single-branched dipolar type and three-branched octupolar type respectively.

Experimental

As shown in **Figure 1**, compound **I** was synthesized by Aldol condensation. Heating 100 mL methanol solution of 2,4,6-trimethyl-s-triazine ⁵ (3.7 g, 0.03 mol) and potassium hydroxide (1.0 g) to reflux, then the solution of 4-N, N-dimethylaminobenzaldehyde (2.24 g, 0.015 mol) in 50 mL methanol was added dropwise in the period of 3 h. The reaction mixture was refluxed for further 24 h. The crude products were purified by column chromatography on silica gel using benzene/ethanol (10/1) as eluent. Compound **II** was synthesized by the same procedure as above except that the molar

^{*} E-mail: fangqi@icm.sdu.edu.cn

Lei YIN et al.

ratio of 4-N,N-dimethylaminobenzaldehyde and 2,4,6-trimethyl-s-triazine was changed to 6:1, and 1,3,5-trimethyl-s-triazine was added into 4-N,N-dimethylaminobenzaldehyde.

2,4-Dimethyl-6-[2-(4-N,N-dimethylamino)phenylethenyl]-1,3,5-s-triazine (compound I):

m.p. $147 \sim 149^{\circ}$ C; H-NMR (CDCl₃, δ ppm): 8.14 (d, 1H, J = 16.09 Hz), 7.53 (d, 2H, J = 8.78 Hz), 6.82 (d, 1H, J = 16.09 Hz), 6.69 (d, 2H, J = 8.78 Hz), 3.03 (s, 6H), 2.60 (s, 6H). E.A.Calcd for C₁₅H₁₈N₄: C, 70.87; H,7.08; N, 22.05. Found: C, 70.95; H, 7.05; N, 21.88.

2,4,6-Tris[2-(4-N,N-dimethylamino)phenylethenyl]-1,3,5-s-triazine (compound II):

m.p. 276~278°C; ¹H-NMR (CDCl₃, δ ppm): 8.21(d, 3H, J=15.60 Hz), 7.59 (d, 6H, J = 8.77 Hz), 6.95 (d, 3H, J = 15.60 Hz), 6.71 (d, 6H, J = 8.78 Hz), 3.03 (s, 9H). MS (70eV) *m*/*z* (%): 516 (M⁺,100), 517(37.39), 343 (46.82), 329 (18.60), 258 (14.88), 171 (59.61), 172 (40.82), 158 (16.45). E.A.Calcd for C₃₃H₃₆N₆: C, 76.74; H, 6.98; N, 16.28. Found: C, 76.57; H, 7.02; N, 15.88.

Crystallographic data and structural features

Compound I crystallized to triclicnic system, P $\overline{1}$ space group, a = 0.7834(5), b = 0.7852(5), c = 1.3105(5) nm, a = 88.966(5), $\beta = 88.966(5)$, $\gamma = 62.259(5)^{\circ}$, V = 0.7035(7) nm³, Z = 2. $R_1 = 0.0775$, $\omega R_2 = 0.1951$ for $I > 2\sigma(I)$.

Synthesis and Properties of s-Triazine Derivatives

As shown in **Figure 2**, compound **I** has a linear polar structure. It is roughly planar with the dihedral angle between the triazine plane and the benzene plane, being only 6.8° , which indicates that the molecule is high conjugated. The conjugation character of compound **I** can also be presented by the bond length data. The NC₃ fragment in dimethylamino is co-planar, and the dihedral angles between NC₃ plane and its neighboring benzene plane is only 2.7° , which indicated the sp²-hybrization of the nitrogen atom (N₄) in molecule **I**.

Linear Absorption and Emission Properties

As shown in **Table 1** and **Figure 3**, both the absorption and the single-photon excited fluorescence (SPEF) spectra show regular red-shift from **I** to **II**, which can be attributed to the extended π -delocalization. It is interesting to note the spectral intensity of **II** was enhanced than that of **I**: At the peak positions, the ratio of ε between **II** and **I** is 3.4 : 1.0 and the ratio of Φ between **II** and **I** is also 3.4: 1.0, which are close to the ratio of the branch number of compound **II** and **I** (3: 1). Resultantly, the ratio of fluorescence intensity (defined here as the product of ε and Φ) between **II** and **I** is quadratically increased to 11.5:1.0, which closed to 3²: 1.

Table 1 The linear and non-linear optical properties of I and II in chloroform

	$\lambda_{\max}{}^a$	\mathcal{E}_{max}^{b}	λ_{\max}^{c}	$\Delta \widetilde{\mathcal{V}}^{\mathrm{d}}$	${\it \Phi}^{ m e}$	I_{\max}^{f}	$\lambda_{\max}{}^{\mathrm{g}}$	$\sigma^{ ext{h}}$
I	406	2.92×10^{4}	489	4180	1.98	578	491	220
II	426	10.02×10^{4}	511	3905	6.64	6653	515	534

^a Absorption peak position in nm, $c = 1.0 \times 10^{-5} \text{ mol } L^{-1}$. ^b Maximum molar absorbance in mol⁻¹ L cm⁻¹. ^c SPEF peak position in nm. ^d Stokes shift in cm⁻¹. ^e SPEF quantum yield in %. ^f Maximum SPEF intensities defined as the product of ε_{max} and the quantum yield Φ . ^g TPEF peak position in nm. ^h TPA cross section in GM (1GM = $10^{-50} \text{ cm}^4 \text{s.molecule}^{-1}$.photon⁻¹), $c = 5 \times 10^{-3} \text{ mol } L^{-1}$.

Figure 3 The absorption and SPEF spectra of I and II in chloroform ($c = 1.0 \times 10^{-5} \text{ mol } L^{-1}$)

Lei YIN et al.

The two-photon excited fluorescence properties

The TPA cross-section (σ) values were obtained by the following equation⁶:

$$\sigma = \sigma_{ref} \frac{\Phi_{ref}}{\Phi} \frac{c_{ref}}{c} \frac{n_{ref}}{n} \frac{F}{F_{ref}}$$

In the above equation, *n* is the refractive index, Φ is the TPEF quantum yield and can be supposed to be equal to the SPEF quantum yield ⁷, *c* is the concentration, *F* is the integral intensity of TPEF and the subscript *ref* refers to the reference sample. Coumarine 307 in MeOH was selected as the reference in this work⁷.

As shown in **Table 1**, the value of σ increased significantly from I to II. Obviously, three-branched octupolar compound is a stronger TPEF emitter, compared with their dipolar counterpart (see Figure 4).

Figure 4 The two-photon fluorescence spectra of **I** and **II** in choloroform ($c = 5 \times 10^{-3} \text{ mol } \text{L}^{-1}$).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20172034, 20472044) and the Ph.D. Programs Foundation of Ministry of Education of China.

References

- 1. C. W. Spangler, J. Mater. Chem., 1999, 9, 2013.
- 2. Y. Ren, Q. Fang, W. T. Yu, et al., J. Mater. Chem., 2000, 10, 2025.
- 3. Z. L. Huang, H. Lei, Na. Li, et al., J. Mater. Chem., 2003, 13, 708
- 4. S. J. Chung, K. S. Kim, T. C. Lin, et al., J. Phys. Chem. B, 1999, 103, 10741.
- 5. H. G. Elias, E. Greth, *Die Makromolekulare Chemie*, **1969**, *123*, 203.
- 6. M. A. Albota, C. Xu, W. W. Webb, *Appl. Optics*, **1998**, *37*, 7352.
- 7. C. Xu, W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481

Received 15 June, 2004